First Steps in Updating Knowing How

Carlos Areces^a, Raul Fervari^{a,b}, <u>Andrés R. Saravia</u>^a and Fernando R. Velázquez-Quesada^c

^aCONICET and Universidad Nacional de Córdoba, Argentina ^bGuangdong Technion Israel Institute of Technology, China ^cUniversity of Bergen, Norway

31/VIII/2022

Overview of the talk

- Background
- The Knowing How logic
- Dynamic modalities: Ontic & epistemic updates
- Conclusions and future work

Knowing how: epistemic notion related to the abilities of an agent has to achieve a goal.

- Knowing how: epistemic notion related to the abilities of an agent has to achieve a goal.
- Wang [2015,2018]: a framework for knowing how logics.

- Knowing how: epistemic notion related to the abilities of an agent has to achieve a goal.
- Wang [2015,2018]: a framework for knowing how logics.
- Areces et al. [2021]: a generalized version by introducing epistemic indistinguishability.

- Knowing how: epistemic notion related to the abilities of an agent has to achieve a goal.
- Wang [2015,2018]: a framework for knowing how logics.
- Areces et al. [2021]: a generalized version by introducing epistemic indistinguishability.
 - Makes a distinction between ontic/factual information, and epistemic information.

- Knowing how: epistemic notion related to the abilities of an agent has to achieve a goal.
- Wang [2015,2018]: a framework for knowing how logics.
- Areces et al. [2021]: a generalized version by introducing epistemic indistinguishability.
 - Makes a distinction between ontic/factual information, and epistemic information.
- This work: a dynamic epistemic approach of knowing how.

- Knowing how: epistemic notion related to the abilities of an agent has to achieve a goal.
- Wang [2015,2018]: a framework for knowing how logics.
- Areces et al. [2021]: a generalized version by introducing epistemic indistinguishability.
 - Makes a distinction between ontic/factual information, and epistemic information.
- This work: a dynamic epistemic approach of knowing how.
 - Actions updating different kinds of information.

0

We introduce dynamic modalities of two types:

- We introduce dynamic modalities of two types:
 - Ontic updates

- We introduce dynamic modalities of two types:
 - ① Ontic updates: modify the ontic information of the models (announcements and arrow updates)

- We introduce dynamic modalities of two types:
 - ① Ontic updates: modify the ontic information of the models (announcements and arrow updates)
 - ② Epistemic updates

- We introduce dynamic modalities of two types:
 - ① Ontic updates: modify the ontic information of the models (announcements and arrow updates)
 - 2 Epistemic updates: modify the perception of the agent about her own abilities (refinements, learning how)

Definition (Uncertainty-based LTS)

Definition (Uncertainty-based LTS)

An LTS U is a tuple $\mathcal{M}=\langle W, \{R_a\}_{a\in Act}, \{\mathbb{S}_i\}_{i\in Agt}, V\rangle$ where:

• $\langle W, \{R_a\}_{a \in Act}, V \rangle$ is an LTS

Definition (Uncertainty-based LTS)

- $\langle W, \{R_a\}_{a \in Act}, V \rangle$ is an LTS and
- $\mathbb{S}_i \subseteq 2^{\mathsf{Act}^*} \setminus \{\emptyset\} \text{ s.t.}$

Definition (Uncertainty-based LTS)

- $\langle W, \{R_a\}_{a \in Act}, V \rangle$ is an LTS and
- $\mathbb{S}_i \subseteq 2^{\mathsf{Act}^*} \setminus \{\emptyset\} \text{ s.t.}$
 - $\emptyset \notin \mathbb{S}_i$

Definition (Uncertainty-based LTS)

- $\langle W, \{R_a\}_{a \in Act}, V \rangle$ is an LTS and
- $\mathbb{S}_i \subseteq 2^{\mathsf{Act}^*} \setminus \{\emptyset\}$ s.t.
 - $\emptyset \notin \mathbb{S}_i$
 - $\pi_1, \pi_2 \in \mathbb{S}_i$ with $\pi_1 \neq \pi_2$ implies $\pi_1 \cap \pi_2 = \emptyset$

Definition (Uncertainty-based LTS)

An LTS^U is a tuple $\mathcal{M} = \langle W, \{R_a\}_{a \in Act}, \{S_i\}_{i \in Agt}, V \rangle$ where:

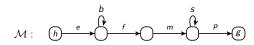
- $\langle W, \{R_a\}_{a \in Act}, V \rangle$ is an LTS and
- $\mathbb{S}_i \subseteq 2^{\mathsf{Act}^*} \setminus \{\emptyset\} \text{ s.t.}$
 - ∅ ∉ S_i
 - $\pi_1, \pi_2 \in \mathbb{S}_i$ with $\pi_1 \neq \pi_2$ implies $\pi_1 \cap \pi_2 = \emptyset$

 \mathbb{S}_i represents the sets of plans agent i cannot distinguish between each other.

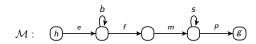
 Two agents attempt to produce a good cake (a goal g), provided they have all the ingredientes (h).

- Two agents attempt to produce a good cake (a goal g), provided they have all the ingredientes (h).
- g is achieved via the following actions: adding eggs (e), beating the eggs (b), adding flour (f), adding milk (m), stir (s) and bake the preparation (p) (the plan ebfmsp).

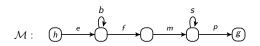
- Two agents attempt to produce a good cake (a goal g), provided they have all the ingredientes (h).
- g is achieved via the following actions: adding eggs (e), beating the eggs (b), adding flour (f), adding milk (m), stir (s) and bake the preparation (p) (the plan ebfmsp).



- Two agents attempt to produce a good cake (a goal g), provided they have all the ingredientes (h).
- g is achieved via the following actions: adding eggs (e), beating the eggs (b), adding flour (f), adding milk (m), stir (s) and bake the preparation (p) (the plan ebfmsp).
- Agent i is aware of that is the way to get a good cake.

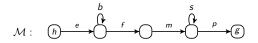


- Two agents attempt to produce a good cake (a goal g), provided they have all the ingredientes (h).
- g is achieved via the following actions: adding eggs (e), beating the eggs (b), adding flour (f), adding milk (m), stir (s) and bake the preparation (p) (the plan ebfmsp).
- Agent *i* is aware of that is the way to get a good cake.



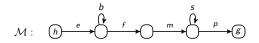
$$\mathbb{S}_i = \{\{ebfmsp\}\},\$$

- Two agents attempt to produce a good cake (a goal g), provided they have all the ingredientes (h).
- g is achieved via the following actions: adding eggs (e), beating the eggs (b), adding flour (f), adding milk (m), stir (s) and bake the preparation (p) (the plan ebfmsp).
- Agent i is aware of that is the way to get a good cake.
- Agent j considers that the order in the instructions do not matter (e.g., ebfmsp and ebmfsp are indistinguishable).



$$\mathbb{S}_i = \{\{ebfmsp\}\},\$$

- Two agents attempt to produce a good cake (a goal g), provided they have all the ingredientes (h).
- g is achieved via the following actions: adding eggs (e), beating the eggs (b), adding flour (f), adding milk (m), stir (s) and bake the preparation (p) (the plan ebfmsp).
- Agent i is aware of that is the way to get a good cake.
- Agent j considers that the order in the instructions do not matter (e.g., ebfmsp and ebmfsp are indistinguishable).

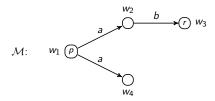


$$\mathbb{S}_i = \{\{ebfmsp\}\},\$$

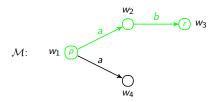
 $\mathbb{S}_i = \{\{ebfmsp, ebmfsp\}\}$

A plan should be fail proof:

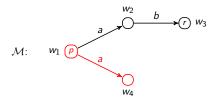
A plan should be fail proof:



A plan should be fail proof:

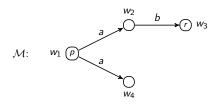


A plan should be fail proof:



A plan should be fail proof:

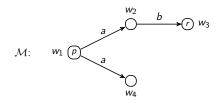
Every partial execution should be completed.



ab is not strongly executable at w_1

A plan should be fail proof:

Every partial execution should be completed.

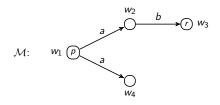


ab is not strongly executable at w_1

• $\sigma \in \mathsf{Act}^*$ is SE at a state u iff every partial execution of σ from u can be completed.

A plan should be fail proof:

Every partial execution should be completed.



ab is not strongly executable at w_1

- $\sigma \in \mathsf{Act}^*$ is SE at a state u iff every partial execution of σ from u can be completed.
- $\pi \subseteq \mathsf{Act}^*$ is SE at a state u iff for all $\sigma \in \pi$, σ is SE at u.

Knowing How: Formulas and semantics

Definition (L_{Kh},-formulas)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \vee \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

Definition (L_{Kh},-formulas)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \vee \varphi \mid \mathsf{Kh}_i(\varphi, \varphi)$$

 $\mathsf{Kh}_i(\psi,\varphi)$: "The agent i knows how to achieve φ given ψ ."

Definition (L_{Kh}:-formulas)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \vee \varphi \mid \mathsf{Kh}_i(\varphi, \varphi)$$

 $\mathsf{Kh}_i(\psi,\varphi)$: "The agent i knows how to achieve φ given ψ ."

Definition

 $\mathcal{M}, w \models \mathsf{Kh}_i(\psi, \varphi)$ iff_{def} there is $\pi \in \mathbb{S}_i$ s.t.

Definition (L_{Kh},-formulas)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \vee \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

 $\mathsf{Kh}_i(\psi,\varphi)$: "The agent i knows how to achieve φ given ψ ."

Definition

 $\mathcal{M}, w \models \mathsf{Kh}_i(\psi, \varphi)$ iff_{def} there is $\pi \in \mathbb{S}_i$ s.t.

 \bullet π is SE at all ψ -states

Definition (L_{Kh}:-formulas)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \vee \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

 $\mathsf{Kh}_i(\psi,\varphi)$: "The agent i knows how to achieve φ given ψ ."

Definition

 $\mathcal{M}, w \models \mathsf{Kh}_i(\psi, \varphi)$ iff_{def} there is $\pi \in \mathbb{S}_i$ s.t.

- \bullet π is SE at all ψ -states, and
- **2** from ψ -states π reaches only to φ -states.

Knowing How: Example

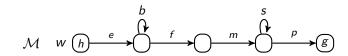
 $\mathcal{M}, w \models \mathsf{Kh}_i(\psi, \varphi)$ iff_{def} there is $\pi \in \mathbb{S}_i$ s.t.

- 1 π is SE at all ψ -states, and
- **2** from ψ -states π reaches only to φ -states.

Knowing How: Example

 $\mathcal{M}, w \models \mathsf{Kh}_i(\psi, \varphi)$ iff_{def} there is $\pi \in \mathbb{S}_i$ s.t.

- \bullet \bullet is SE at all ψ -states, and
- **2** from ψ -states π reaches only to φ -states.

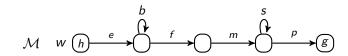


• $\mathbb{S}_i = \{\{ebfmsp\}\}, \qquad \mathbb{S}_i = \{\{ebfmsp, ebmfsp\}\}.$

Knowing How: Example

 \mathcal{M} , $w \models \mathsf{Kh}_i(\psi, \varphi)$ iff_{def} there is $\pi \in \mathbb{S}_i$ s.t.

- **1** π is SE at all ψ -states, and
- **2** from ψ -states π reaches only to φ -states.



- $S_i = \{\{ebfmsp\}\}, \qquad S_i = \{\{ebfmsp, ebmfsp\}\}.$
- \mathcal{M} , $w \models \mathsf{Kh}_i(h,g) \land \neg \mathsf{Kh}_i(h,g)$

Two distinct types of information in an LTS^U:

• Ontic information: provided by the graph part

- Ontic information: provided by the graph part
 - the available states, the accessibility relations, etc.

- Ontic information: provided by the graph part
 - the available states, the accessibility relations, etc.
- Epistemic information: given by the indistinguishability sets S_i

- Ontic information: provided by the graph part
 - the available states, the accessibility relations, etc.
- Epistemic information: given by the indistinguishability sets S_i
 - the perception of each agent about her own abilities.

Two distinct types of information in an LTS^U:

- Ontic information: provided by the graph part
 - the available states, the accessibility relations, etc.
- Epistemic information: given by the indistinguishability sets S_i
 - the perception of each agent about her own abilities.

This enables us to define ways of updating these two types of information.

Definition (PAL_{Kh}; formulas)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [!\varphi]\varphi$$

Definition (PAL_{Kh}, formulas)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [!\varphi]\varphi$$

 $[!\chi]\varphi$: "After announcing χ , φ holds."

Definition (PAL_{Kh}; formulas)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [!\varphi]\varphi$$

 $[!\chi]\varphi$: "After announcing χ , φ holds."

Definition $(\mathcal{M}_{!\chi})$

$$\mathcal{M}, w \models [!\chi]\varphi \text{ iff } \mathcal{M}, w \models \chi \text{ implies } \mathcal{M}_{!\chi}, w \models \varphi$$

Definition (PAL_{Kh}; formulas)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [!\varphi]\varphi$$

 $[!\chi]\varphi$: "After announcing χ , φ holds."

Definition $(\mathcal{M}_{!\chi})$

$$\mathcal{M}, w \models [!\chi]\varphi \text{ iff } \mathcal{M}, w \models \chi \text{ implies } \mathcal{M}_{!\chi}, w \models \varphi; \text{ where } \mathcal{M}_{!\chi} = \langle \mathsf{W}_{!\chi}, \mathsf{R}_{!\chi}, \mathbb{S}, \mathsf{V}_{!\chi} \rangle$$
:

Definition (PAL_{Kh}; formulas)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [!\varphi]\varphi$$

 $[!\chi]\varphi$: "After announcing χ , φ holds."

Definition $(\mathcal{M}_{!_{Y}})$

 $\mathcal{M}, w \models [!\chi]\varphi$ iff $\mathcal{M}, w \models \chi$ implies $\mathcal{M}_{!\chi}, w \models \varphi$; where $\mathcal{M}_{!\chi} = \langle \mathsf{W}_{!\chi}, \mathsf{R}_{!\chi}, \mathbb{S}, \mathsf{V}_{!\chi} \rangle$:

•
$$W_{!\chi} = [\![\chi]\!]^{\mathcal{M}}$$

Definition (PAL_{Kh}; formulas)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [!\varphi]\varphi$$

 $[!\chi]\varphi$: "After announcing χ , φ holds."

Definition $(\mathcal{M}_{!_{\mathcal{X}}})$

 $\mathcal{M}, w \models [!\chi]\varphi \text{ iff } \mathcal{M}, w \models \chi \text{ implies } \mathcal{M}_{!\chi}, w \models \varphi; \text{ where } \mathcal{M}_{!\chi} = \langle W_{!\chi}, R_{!\chi}, \mathbb{S}, V_{!\chi} \rangle$:

- $W_{!\chi} = [\![\chi]\!]^{\mathcal{M}}$,
- $(R_{!\chi})_a = \{(w, v) \in R_a \mid w \in [\![\chi]\!]^M, R_a(w) \subseteq [\![\chi]\!]^M\}$

Definition (PAL_{Kh}; formulas)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [!\varphi]\varphi$$

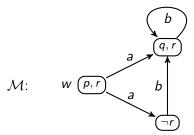
 $[!\chi]\varphi$: "After announcing χ , φ holds."

Definition $(\overline{\mathcal{M}}_{!_{Y}})$

 $\mathcal{M}, w \models [!\chi]\varphi$ iff $\mathcal{M}, w \models \chi$ implies $\mathcal{M}_{!\chi}, w \models \varphi$; where $\mathcal{M}_{!Y} = \langle W_{!Y}, R_{!Y}, \mathbb{S}, V_{!Y} \rangle$:

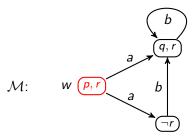
- $W_{!y} = \llbracket \chi \rrbracket^{\mathcal{M}}$.
- $(R_{!x})_a = \{(w, v) \in R_a \mid w \in [\![\chi]\!]^M, R_a(w) \subseteq [\![\chi]\!]^M\}, \text{ and }$
- $V_{!_{Y}}(w) = V(w)$.

$$\mathcal{M}, w \models \mathsf{Kh}_i(p, q), \, \mathbb{S}_i = \{\{ab\}\}\$$



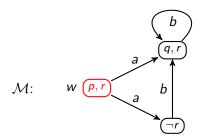
$$\mathcal{M}, w \models [!r] \mathsf{Kh}_i(p,q)$$
?

$$\mathcal{M}, w \models \mathsf{Kh}_i(p, q), \, \mathbb{S}_i = \{\{ab\}\}\$$



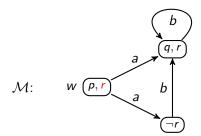
$$\mathcal{M}, w \models [!r] \mathsf{Kh}_i(p, q)$$

$$\mathcal{M}$$
, $w \models \mathsf{Kh}_i(p,q)$, $\mathbb{S}_i = \{\{ab\}\}$



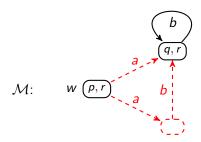
$$\mathcal{M}, w \models r \rightarrow \mathcal{M}_{1r}, w \models \mathsf{Kh}_i(p, q)$$

$$\mathcal{M}, w \models \mathsf{Kh}_i(p, q), \, \mathbb{S}_i = \{\{ab\}\}\$$



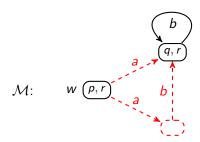
$$\mathcal{M}, w \models r \rightarrow \mathcal{M}_{1r}, w \models \mathsf{Kh}_i(p, q)$$

$$\mathcal{M}, w \models \mathsf{Kh}_i(p, q), \, \mathbb{S}_i = \{\{ab\}\}\$$



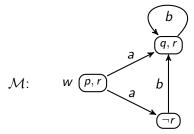
$$\mathcal{M}, w \models r \rightarrow \mathcal{M}_{1r}, w \models \mathsf{Kh}_{i}(p,q)$$

$$\mathcal{M}, w \models \mathsf{Kh}_i(p, q), \, \mathbb{S}_i = \{\{ab\}\}\$$



$$\mathcal{M}, w \models r \rightarrow \mathcal{M}_{1r}, w \not\models \mathsf{Kh}_i(p, q)$$

$$\mathcal{M}$$
, $w \models \mathsf{Kh}_i(p,q)$, $\mathbb{S}_i = \{\{ab\}\}$



$$\mathcal{M}, w \not\models [!r] \mathsf{Kh}_i(p,q)$$

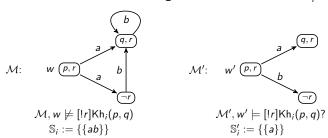
Theorem

 PAL_{Kh_i} is more expresive than L_{Kh_i} over arbitrary LTS^Us.

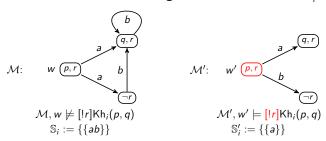
Theorem

PAL_{Kh}; is more expresive than L_{Kh} ; over arbitrary LTS^Us.

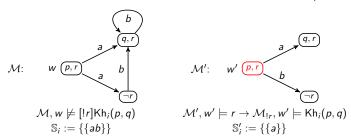
Ontic updates 00000



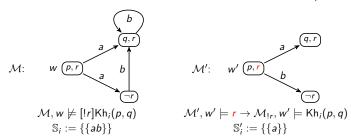
Ontic updates 00000



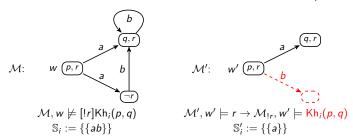
Ontic updates 00000



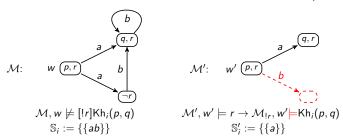
Ontic updates 00000



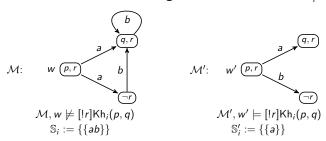
Ontic updates 00000



Ontic updates 00000

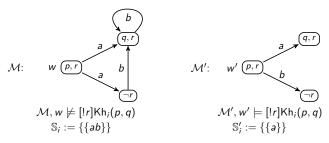


Ontic updates 00000



Ontic updates 00000

Let \mathcal{M} and \mathcal{M}' two indistinguishable LTS^Us for L_{Kh}:



PAL_{Kh}: can distinguish between the class of arbitrary models and the class of models s.t. for all $\pi \in \mathbb{S}_i$, $\pi \subseteq \mathsf{Act}$.

 $\mathsf{PAL}_{\mathsf{Kh}_i}$ can distinguish between the *class of arbitrary models* and the class of models s.t. for all $\pi \in \mathbb{S}_i$, $\pi \subseteq \mathsf{Act}$.

 $\mathsf{PAL}_{\mathsf{Kh}_i}$ can distinguish between the *class of arbitrary models* and the class of models s.t. for all $\pi \in \mathbb{S}_i$, $\pi \subseteq \mathsf{Act}$.

• This cannot be done in L_{Kh}, [Areces et al. (TARK 2021)].

 $\mathsf{PAL}_{\mathsf{Kh}_i}$ can distinguish between the *class of arbitrary models* and the class of models s.t. for all $\pi \in \mathbb{S}_i$, $\pi \subseteq \mathsf{Act}$.

- This cannot be done in L_{Kh}; [Areces et al. (TARK 2021)].
- In these models (where $\pi \subseteq Act$), every PAL_{Kh_i} formula can be reduced to a L_{Kh_i} formula:

 $\mathsf{PAL}_{\mathsf{Kh}_i}$ can distinguish between the class of arbitrary models and the class of models s.t. for all $\pi \in \mathbb{S}_i$, $\pi \subseteq \mathsf{Act}$.

- This cannot be done in L_{Kh}; [Areces et al. (TARK 2021)].
- In these models (where $\pi \subseteq Act$), every PAL_{Kh_i} formula can be reduced to a L_{Kh_i} formula:

$$[!\chi]\mathsf{Kh}_i(\varphi,\psi) \leftrightarrow (\chi \to \mathsf{Kh}_i(\chi \land [!\chi]\varphi, \chi \land [!\chi]\psi)).$$

• PAL_{Kh_i} is not the only way of updating ontic information.

- PAL_{Kh}; is not the only way of updating ontic information.
- We applied similar ideas using an Arrow Update Logic [Kooi and Renne (RSL 2011)].

- PAL_{Kh}; is not the only way of updating ontic information.
- We applied similar ideas using an Arrow Update Logic [Kooi and Renne (RSL 2011)].
- We can also perform epistemic updates (affecting directly the "knowing how").

- PAL_{Kh}; is not the only way of updating ontic information.
- We applied similar ideas using an Arrow Update Logic [Kooi and Renne (RSL 2011)].
- We can also perform epistemic updates (affecting directly the "knowing how").
- Proposal: refining the indistinguishability between plans, i.e., making plans distinguishable for the agent.

- PAL_{Kh}; is not the only way of updating ontic information.
- We applied similar ideas using an Arrow Update Logic [Kooi and Renne (RSL 2011)].
- We can also perform epistemic updates (affecting directly the "knowing how").
- Proposal: refining the indistinguishability between plans, i.e., making plans distinguishable for the agent.
 - Explicit refinement for two given plans.

- PAL_{Kh}; is not the only way of updating ontic information.
- We applied similar ideas using an Arrow Update Logic [Kooi and Renne (RSL 2011)].
- We can also perform epistemic updates (affecting directly the "knowing how").
- Proposal: refining the indistinguishability between plans, i.e., making plans distinguishable for the agent.
 - Explicit refinement for two given plans.
 - Arbitrary refinements.

- PAL_{Kh}; is not the only way of updating ontic information.
- We applied similar ideas using an Arrow Update Logic [Kooi and Renne (RSL 2011)].
- We can also perform epistemic updates (affecting directly the "knowing how").
- Proposal: refining the indistinguishability between plans, i.e., making plans distinguishable for the agent.
 - Explicit refinement for two given plans.
 - 2 Arbitrary refinements.
 - "Learning how".

Definition (L_{Ref} formulas)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \vee \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid \langle \sigma_{1} \not\sim \sigma_{2} \rangle \varphi$$

Definition (L_{Ref} formulas)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid \langle \sigma_{1} \not\sim \sigma_{2} \rangle \varphi$$

 $\langle \sigma_1 \not\sim \sigma_2 \rangle \varphi$: "After it is stated that plans σ_1 and σ_2 are distinguishable, φ holds."

Epistemic updates: Refinement (L_{Ref}) (cont.)

$$\mathcal{M}: \quad \text{h} \xrightarrow{e} \quad \text{h} \xrightarrow{f} \quad \text{m} \xrightarrow{s} \quad \text{p}$$

$$\mathbb{S}_{i} = \{\{ebfmsp\}\}, \qquad \mathbb{S}_{j} = \{\{ebfmsp, ebmfsp\}\}$$

• \mathcal{M} , $w \not\models \mathsf{Kh}_i(h,g)$

Epistemic updates: Refinement (L_{Ref}) (cont.)

$$\mathcal{M}: \quad \text{h} \xrightarrow{e} \xrightarrow{b} \quad \text{f} \xrightarrow{m} \xrightarrow{s} \quad \text{p}$$

$$\mathbb{S}_{i} = \{\{ebfmsp\}\}, \quad \mathbb{S}_{j} = \{\{ebfmsp\}, \{ebmfsp\}\}\}$$

• \mathcal{M} , $w \not\models \mathsf{Kh}_j(h,g)$ but \mathcal{M} , $w \models \langle ebfmsp \not\sim ebmfsp \rangle \mathsf{Kh}_j(h,g)$;

$$\mathcal{M}: \quad \stackrel{e}{h} \stackrel{\stackrel{b}{\longleftarrow} \stackrel{f}{\longleftarrow} \stackrel{s}{\longleftarrow} \stackrel{p}{\longleftarrow} \mathcal{E}$$

$$\mathbb{S}_{i} = \{\{ebfmsp\}\}, \quad \qquad \mathbb{S}_{j} = \{\{ebfmsp\}, \{ebmfsp\}\}$$

- \mathcal{M} , $w \not\models \mathsf{Kh}_i(h,g)$ but \mathcal{M} , $w \models \langle ebfmsp \not\sim ebmfsp \rangle \mathsf{Kh}_i(h,g)$;
 - generates new knowledge

$$\mathcal{M}: \quad \stackrel{e}{h} \stackrel{\stackrel{b}{\longleftarrow} \stackrel{f}{\longleftarrow} \stackrel{s}{\longleftarrow} \stackrel{p}{\longleftarrow} \stackrel{\mathcal{E}}{\longleftarrow} \stackrel{p}{\longleftarrow} \stackrel{\mathcal{E}}{\longleftarrow} \stackrel{g}{\longleftarrow} \stackrel{g}{\longrightarrow} \stackrel{g}{\longleftarrow} \stackrel{g}{\longleftarrow} \stackrel{g}{\longleftarrow} \stackrel{g}{\longleftarrow} \stackrel{g}{\longleftarrow} \stackrel{g}{\longleftarrow} \stackrel{g}{\longleftarrow} \stackrel{g}{\longleftarrow} \stackrel{g}{\longrightarrow} \stackrel{g}{\longleftarrow} \stackrel{g}{\longrightarrow} \stackrel{g}$$

- \mathcal{M} , $w \not\models \mathsf{Kh}_{j}(h,g)$ but \mathcal{M} , $w \models \langle ebfmsp \not\sim ebmfsp \rangle \mathsf{Kh}_{j}(h,g)$;
 - generates new knowledge
- $\mathcal{M}, w \models \mathsf{Kh}_i(h, g)$ and $\mathcal{M}, w \models \langle ebfmsp \not\sim ebmfsp \rangle \mathsf{Kh}_i(h, g)$.

$$\mathcal{M}: \quad \stackrel{e}{h} \stackrel{\stackrel{b}{\longleftarrow} \stackrel{f}{\longleftarrow} \stackrel{s}{\longleftarrow} \stackrel{p}{\longleftarrow} \stackrel{g}{\longleftarrow} \stackrel{g}{\longrightarrow} \stackrel{$$

- \mathcal{M} , $w \not\models \mathsf{Kh}_{j}(h,g)$ but \mathcal{M} , $w \models \langle ebfmsp \not\sim ebmfsp \rangle \mathsf{Kh}_{j}(h,g)$;
 - generates new knowledge
- \mathcal{M} , $w \models \mathsf{Kh}_i(h,g)$ and \mathcal{M} , $w \models \langle ebfmsp \not\sim ebmfsp \rangle \mathsf{Kh}_i(h,g)$.
 - preserves knowledge

$$\mathcal{M}: \quad \stackrel{e}{\text{h}} \stackrel{\stackrel{b}{\text{f}}}{\text{f}} \stackrel{\stackrel{s}{\text{f}}}{\text{f}} \stackrel{p}{\text{f}} \stackrel{\mathcal{C}}{\text{g}}$$

$$\mathbb{S}_{i} = \{\{ebfmsp\}\}, \quad \mathbb{S}_{j} = \{\{ebfmsp\}, \{ebmfsp\}\}\}$$

- \mathcal{M} , $w \not\models \mathsf{Kh}_j(h,g)$ but \mathcal{M} , $w \models \langle ebfmsp \not\sim ebmfsp \rangle \mathsf{Kh}_j(h,g)$;
 - generates new knowledge
- $\mathcal{M}, w \models \mathsf{Kh}_i(h, g)$ and $\mathcal{M}, w \models \langle ebfmsp \not\sim ebmfsp \rangle \mathsf{Kh}_i(h, g)$.
 - preserves knowledge

Property:

L_{Ref} is more expressive than L_{Kh}..

Arbitrary Refinement (L_{ARef})

Arbitrary Refinement (L_{ARef})

Definition (L_{ARef})

$$\mathcal{M}, w \models \langle \not \sim \rangle \varphi \text{ iff}_{def}$$

there are $\sigma_1, \sigma_2 \in \mathsf{Act}^* \text{ s.t. } \mathcal{M}, w \models \langle \sigma_1 \not \sim \sigma_2 \rangle \varphi$.

Arbitrary Refinement (L_{ARef})

Definition (L_{ARef})

 $\mathcal{M}, w \models \langle \not\sim \rangle \varphi \text{ iff}_{def}$ there are $\sigma_1, \sigma_2 \in \mathsf{Act}^* \text{ s.t. } \mathcal{M}, w \models \langle \sigma_1 \not\sim \sigma_2 \rangle \varphi$.

 $\langle \gamma \rangle \varphi$: "After it is stated that some pair of plans are distinguishable, φ holds."

Arbitrary Refinement (L_{ARef})

Definition (L_{ARef})

$$\mathcal{M}, w \models \langle \gamma \rangle \varphi \text{ iff}_{def}$$

there are $\sigma_1, \sigma_2 \in \mathsf{Act}^* \text{ s.t. } \mathcal{M}, w \models \langle \sigma_1 \not\sim \sigma_2 \rangle \varphi$.

 $\langle \not \sim \rangle \varphi$: "After it is stated that some pair of plans are distinguishable, φ holds."

Property:

LARef is more expressive than LKhi.

Learning How (L_{Lh})

These new modalities enable us to define a goal-oriented learning modality:

$$\langle \psi, \varphi \rangle_i \chi := \langle \not\sim \rangle (\mathsf{Kh}_i(\psi, \varphi) \wedge \chi)$$

$\overline{\mathsf{Learning}\;\mathsf{How}\;}(\mathsf{L}_{\mathsf{Lh}})$

These new modalities enable us to define a goal-oriented learning modality:

$$\langle \psi, \varphi \rangle_i \chi := \langle \not\sim \rangle (\mathsf{Kh}_i(\psi, \varphi) \wedge \chi)$$

"The agent i can learn how to achieve φ given ψ and after this learning operation takes place, χ holds."

Learning How (L_{Lh})

These new modalities enable us to define a goal-oriented learning modality:

$$\langle \psi, \varphi \rangle_i \chi := \langle \not\sim \rangle (\mathsf{Kh}_i(\psi, \varphi) \wedge \chi)$$

"The agent i can learn how to achieve φ given ψ and after this learning operation takes place, χ holds."

$$L_i(\psi,\varphi) := \langle \psi, \varphi \rangle_i \top$$
: learnability test

Learning How (L_{Lh})

These new modalities enable us to define a goal-oriented learning modality:

$$\langle \psi, \varphi \rangle_i \chi := \langle \varphi \rangle (\mathsf{Kh}_i(\psi, \varphi) \wedge \chi)$$

"The agent i can learn how to achieve φ given ψ and after this learning operation takes place, χ holds."

 $L_i(\psi,\varphi) := \langle \psi, \varphi \rangle_i \top$: learnability test

Learning How (L_{Lh})

These new modalities enable us to define a goal-oriented learning modality:

$$\langle \psi, \varphi \rangle_i \chi := \langle \varphi \rangle (\mathsf{Kh}_i(\psi, \varphi) \wedge \chi)$$

"The agent i can learn how to achieve φ given ψ and after this learning operation takes place, χ holds."

$$L_i(\psi,\varphi) := \langle \psi, \varphi \rangle_i \top$$
: learnability test

Property:

L_{Lh} is more expressive than L_{Kh}.

Conclusions

Dynamic modalities in the context of knowing how logics.

- Ontic updates:
 - Announcement-like and arrow-update-like modalities
 - Axiomatizations over a particular class of models
- Epistemic updates:
 - Refining the perception of an agent regarding her own abilities.
 - Preliminary thoughts and some semantic properties.

Future work

- Study other dynamic operators in this context.
- Explore alternative techniques for obtaining proof systems without a general rule of substitution.
- Find fragments that are axiomatizable via reduction axioms by studying the operators' expressivity.